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Summary 

The elastic equations of state for 2-component networks are 
derived from a joint Gaussian distribution function composed of 
Gaussians for each component. The free energy of elasticity is 
then applied to the case of uni-directional deformations for com- 
patible systems. The stress-strain equations are shown to be 
equivalent to those for a single component network except in the 
case where the macroscopic strain is sufficient to cause the ratio 
of average chain lengths of the components to change with the 
strain. The stress-strain equations are developed for both dry 
and swollen networks, 

Introduction 

Multicomponent polymer systems have been an intense area of 
work for many years. Most such systems studied in the crosslinked 
form have been interpenetrating networks (IPN) and, although the 
crosslinks are not covalently permanent, multiblock polymers 
are generally incompatible. Another type of multicomponent system 
can exist, in which the different types of polymer chains are 
joined as graft copolymers. If the termini of one component are 
all joined with the chains of the other component in a random 
fashion, one obtains what might be referred to as a terminally 
crosslinked graft copolymer (TCGP). 1 Polymers of this type were 
first introduced by Bamford et. al. and experimental work 
dealt with differences in physical properties as a consequence of 
variation of the relative glass transition temperature of the two 
components. Other heterogeneous systems studied include polyether- 
polypeptide combinations. 2 Bamford's networks proved to be 
incompatible and exhibited phase separation 3 while the polyether- 
polypeptide combinations proved to be compatible. All of these 
papers are concerned with experimental determination of physical 
properties and none attempt a derivation of equations of state 
from which their behavior may be explained. To be sure, true 
single phase behavior as opposed to heterophase behavior is a cen- 
tral issue here, and as long as nearly complete phase separation 
occurs, the theories of Helfand '4 and Meier 5 concerning block 
copolymers can be applied. However, an application of classical 
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theories of solvent mixing and elasticity to TCGP's has not ap- 
peared. Therefore, for the situation of single phase behavior, 
we will apply some well-known concepts to the elastic properties 
of two-component TCGP's. Our assumptions are: 

i. The two polymer components are inherently compatible, or can 
be made compatible by swelling in a mutually good solvent. 

2. Both sets of chains belong to a Gaussian distribution, not 
necessarily the same one. 

3. Deformations of the mixed network are taken to be affine in 
the macroscopic strain with respect to each set of chains. 

Theory 

Henceforth, component two refers to the end-linked component 
(grafted segment) and component three refers to the "host" polymer. 
If both sets of chains have Gaussian probability density functions, 
it can be shown that the joint Gaussian must be a product of the 
individuals, 

Q(r2r 3) = Q(r2)Q(r3) (1) 

where Q(rj) is the partition function for component j having end to 
end distance r 4 . If the combined network undergoes a homogeneous 
deformation inJwhich the average end to end vector undergoes an 
affine deformation for each component, the properties of the 
Gaussian function allow us to write, 

~ij = xij/Xoij (2) 

where component j is strained in the i direction to a deformation 
ratio of ~ , where i = i, 2, 3 corresponding to the principle 
strain axe$~ If one writes the Boltzman entropy change as a 
result of the deformation, we have, 

AS = k in {Q(r2,r3)/Q(ro2,ro3)} (3) 

which transforms to cartesian coordinates as, 

As = k ~j ~Xoij(1 - ~.)~j (4) 
j=2 i=l 

where B 4 is the constant appearing in the Gaussian for each com- 
ponent Jand is related to the contour length of each set of chains. 
If we define the root mean square end to end distance for each 
set of chains in the usual way, 

<r~>3 o = v j l ~ j  r2"o3 = 3/2B~ (5) 
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where 9~ represents the number of chains of type J and recall that 
chain v~ctors are randomly placed so that, 

~Xoi j = (1/3) ~ roj ; i = 1,2,3 (6) 

3 3 
we can combine equations (4), (5) and (6) to obtain, 

3 3 

AS = (-k/2) ~'~" ----l~(l~j - i) (7) 
J i=l 

which is just the entropy change associated with afflne deforma- 
tion of each component as though the other served only as an 
independant partner in the process. As long as a suitable refer- 
ence state can be found which can be characterized as following 
Gaussian statistics and the deformation of one set of chains does 
not perturb the statistical nature of the other set, equation (7) 
should hold. We have followed a line of reasoning above which 
does not include the controversial logarithmic term which appears 
in the Flory-Wall6, 7 version of the theory but does not appear in 
the James and Guth 8,9 version. This term should be included, 
and if one assumes the additivity of the volumes of each component, 
the free energy change upon deformation for the two-component 
system is, 

3 3 

= T ' .  l> + AFne t 
j=2 i = l  ~J 

+ BkT 2. ~jln H i Xij (8) 
j=2 

where A and B are utilized to reflect the unsettled question as to 
their proper values. I0 We are not presently concerned with this 
issue, but rather, with the form of the equations as it applies 
to TCGP's. We proceed with the stress-strain relations for two- 
component networks. The macroscopic strain for component J in the 
i direction is, 

~j = %~.<r~> /<r~>. (9) 
13 30 3K 

where <r~>^ are the ideal reference dimensions defined by an 
equivale~t~uncrosslinked system and <r.2>,are the reference dimen- 
sions in the isotropic undeformed realOne~work. The volume of 
component j in the strained state relative to the kth reference 
state is, 

= Vj/Vkj (i0) ~lj~2j~3j 

while for the specimen itself, the analogous relation for the whole 
system is, 

~i~2~3 = V/V k (ii) 
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Since we wish to relate the relative volumes of the two components 
in terms of their chain dimensions, in the strained and unstrained 
states we must take cognizance of the possibility that the rela- 
tive chain dimensions may change upon deformation. This is done 
by writing, 

C~lje2j~3j = fjV/fkjV j (12) 

where f. and fk o are volume fractions of component j in the 
straine~ and us~rained states, respectively. We define a param- 
eter, P as follows, 

P = (fj/fkj) 2/3 = p(1 + p~/2)2/3p~l(1 + p3/2)-2/3 (13) 

where, 

pk = <r~>k/<r~>k ; p = <r~>/<r~> (14) 

and reflects the relative dimensions of the two components in each 
state. If Pk = p~ then P=I. However, if the deformation of one 
component perturbs the Gaussian behavior of the other component, 
the relative dimensions will be different in the two states and 
P # i, but rather will be a function of the strain. What this 
means is that finite extensibility of one set of chains will 
produce an additional strain dependance on the macroscopic stress. 
Having defined this possibility, we make the final affine trans- 
formation as, 

kzj~ = P~<r~>_/<r~>l ] K 3 o (15) 

We consider the case of a uni-directional deformation in the one 
direction in which, 

2 = p~.2<r2.>~/<r2.> 
klj i 3 K j o 

2 = PV<r2> /~ V <r~> (16) 
-- j o 
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where V/V k is the macroscopic volume change on deformation. Sub- 
stitution into equation (8) with subsequent differentiation 
according to, 

f = (~AFnet/~X)v,T (17) 

where the one direction is now the X direction produces, 

f = (VkARTP/Xo)(~ - V/~2Vk) ~<r~>./<r~>j 3 ~ j o (18) 

j=2 

where f is the force, Xois the undeformed dimension and ~. is the 
number of network chains of type j per unit dry volume of Jthe total 
network. Equation (18) expresses the idea that the two-component 
network should behave in the strain exactly as a one-component 
network until the parameter P becomes strain dependant. It is 
expected, however, that for any reasonable Gaussian distribution, 
the deviation of P from unity would occur only at large strains. 

Experimental 

The two-component systems described in this paper are hydro- 
gels and consist of poly-vinyl-pyrrolidone (PVP) crosslinked with 
polyethylene glycol (PEG) oligomers. The method of functional 
oligomer preparation will be reported elsewhere, although the 
allylic termini of the PEG components were prepared in a fashion 
similar to that described in our earlier publicationsll, 12 
concerning one-component networks. The PEG component varied in 
molecular weight from 600 to 4,000 and four crosslink densities 
were prepared from each oligomer by copolymerization with N-vinyl 
pyrrolidone. The networks were subsequently washed for several 
weeks and swollen to equilibrium in water. Cylindrical samples 
were carefully cut from the swollen sheets and uni-directional 
compression measurements were performed using a modified depth 
gauge as described by Cluff, et.al. 13 The specimens were sur- 
rounded by water at all times in order to prevent water loss due 
to evaporation. 

Results and Discussion 

Compressive strains applied to swollen networks result in 
small solvent losses which are normally approximated as being 
proportional to the square root of the strain. I~ Taking this 
(and the fact that the networks are swollen) into account, equa- 
tion (18) reads, 

3 

f = (VkARTP~2/3/Xo)(~ _ ~-3/2)~ ~<r~>_/<r~> (19) 
j jK jo 

j=2 
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Compression modulus as a function of strain for 
2-component hydrogels. Numbers on curves are 
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where ~~ represents the volume fraction of network in the swollen 
undeformed specimen. Since the specimens utilized were cylinders 
the unswollen, undeformed volume can be expressed as, 

V k = ~gSX ~ (20) 

where S is the crossectional area of the already swollen un- 
deformed specimen. Substitution of (20) into (19) with subsequent 
division of both sides by the strain, provides an expression which 
relates the modulus of the swollen network, G, to the strain, 

3 

G = ARTFUl/3(1 - ~-5/2)~'~@<r~>_/<r~> (21) 
z-J3 3K 3o 
j=2 

Hence, if ~ is independant of strain, a plot of the modulus, G, 
versus e -512 will give a straight llne with slope related to the 
total number of elastic chains. Moreover, if P is strain inde- 
pendant, the slope and intercept of the plot should be equivalent 
in magnitude but opposite in sign. In Figures 1-3 we exhibit the 
plots suggested by equation (21) for the networks prepared with 
PEG crosslinking agents of molecular weight 600, 1000 and 3000, 
respectlvely. In all cases, the plots are linear and extrapolated 
intercepts agree quite well with the slopes. Table I tabulates 
the results of these calculations along with the crosslink dens/- 
ties and degrees of water swelling for the networks studied. It 
is apparent from these results that the relative chain lengths of 
the 2-components remain constant over this range in strain. Due 
to the uncertainty in the value of A in the theory and the unknown 
values of the individual memory terms (coefficients of 9~) it is 
impossible to quantitatively calculate the number of elastic net- 
work chains from these data. However, it is obvious that the 
calculated crosslink densities are very nearly directly propor- 
tional to the slopes of the stress-straln curves. 

Although these measurements cannot provide the number of 
elastic chains, they do provide valuable information which will be 
applied to swelling measurements on the same networks to be re- 
ported upon in a future publication. 
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